Homomorphisms of unary algebras and of their expansions
It is shown how Lawvere's one-to-one translation between Birkhoff's description of varieties and the categorical one (see [6]) turns Hu's theorem on varieties generated by a primal algebra (see [4], [5]) into a simple reformulation of the classical representation theorem of finite Boolean algebras as powerset algebras.
The theory of hyperidentities generalizes the equational theory of universal algebras and is applicable in several fields of science, especially in computers sciences (see e.g. [2,1]). The main tool to study hyperidentities is the concept of a hypersubstitution. Hypersubstitutions of many-sorted algebras were studied in [3]. On the basis of hypersubstitutions one defines a pair of closure operators which turns out to be a conjugate pair. The theory of conjugate pairs of additive closure operators...
In [2] the theory of hyperidentities and solid varieties was extended to algebraic systems and solid model classes of algebraic systems. The disadvantage of this approach is that it needs the concept of a formula system. In this paper we present a different approach which is based on the concept of a relational clone. The main result is a characterization of solid model classes of algebraic systems. The results will be applied to study the properties of the monoid of all hypersubstitutions of an...
It is shown that in the variety of orthomodular lattices every hypersubstitution respecting all absorption laws either leaves the lattice operations unchanged or interchanges join and meet. Further, in a variety of lattices with an involutory antiautomorphism a semigroup generated by three involutory hypersubstitutions is described.
Let and be graph algebras. In this paper we present the notion of an ideal in a graph algebra and prove that an ideal extension of by always exists. We describe (up to isomorphism) all such extensions.