Displaying 521 – 540 of 1398

Showing per page

Invariance groups of finite functions and orbit equivalence of permutation groups

Eszter K. Horváth, Géza Makay, Reinhard Pöschel, Tamás Waldhauser (2015)

Open Mathematics

Which subgroups of the symmetric group Sn arise as invariance groups of n-variable functions defined on a k-element domain? It appears that the higher the difference n-k, the more difficult it is to answer this question. For k ≤ n, the answer is easy: all subgroups of Sn are invariance groups. We give a complete answer in the cases k = n-1 and k = n-2, and we also give a partial answer in the general case: we describe invariance groups when n is much larger than n-k. The proof utilizes Galois connections...

Isotopy invariant quasigroup identities

Aleksandar Krapež, Bojan Marinković (2016)

Commentationes Mathematicae Universitatis Carolinae

According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables.

Join-closed and meet-closed subsets in complete lattices

František Machala, Vladimír Slezák (2004)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

To every subset A of a complete lattice L we assign subsets J ( A ) , M ( A ) and define join-closed and meet-closed sets in L . Some properties of such sets are proved. Join- and meet-closed sets in power-set lattices are characterized. The connections about join-independent (meet-independent) and join-closed (meet-closed) subsets are also presented in this paper.

k-Normalization and (k+1)-level inflation of varieties

Valerie Cheng, Shelly Wismath (2008)

Discussiones Mathematicae - General Algebra and Applications

Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety V, there is...

Currently displaying 521 – 540 of 1398