Tolerances on powers of a finite algebra
It is shown that any power , of a finite -element algebra , has factorable tolerances whenever the power has the same property.
It is shown that any power , of a finite -element algebra , has factorable tolerances whenever the power has the same property.
In which the binary product algebra of complex numbers, C, is generalized to a ternary product algebra, .
A number of new results that say how to transfer the entailment relation between two different finite generators of a quasi-variety of algebras is presented. As their consequence, a well-known result saying that dualisability of a quasi-variety is independent of the generating algebra is derived. The transferral of endodualisability is also considered and the results are illustrated by examples.
Results saying how to transfer the entailment in certain minimal and maximal ways and how to transfer strong dualisability between two different finite generators of a quasi-variety of algebras are presented. A new proof for a well-known result in the theory of natural dualities which says that strong dualisability of a quasi-variety is independent of the generating algebra is derived.
Tree transducers are systems which transform trees into trees just as automata transform strings into strings. They produce transformations, i.e. sets consisting of pairs of trees where the first components are trees belonging to a first language and the second components belong to a second language. In this paper we consider hypersubstitutions, i.e. mappings which map operation symbols of the first language into terms of the second one and tree transformations defined by such hypersubstitutions....