The search session has expired. Please query the service again.
Displaying 101 –
120 of
150
A -labeled -poset is an (at most) countable set, labeled in the set , equipped with partial orders. The collection of all -labeled -posets is naturally equipped with binary product operations and -ary product operations. Moreover, the -ary product operations give rise to
A Σ-labeled n-poset is an (at most) countable set,
labeled in the set Σ, equipped with n partial orders.
The collection of all Σ-labeled n-posets is naturally
equipped with n binary product operations and
nω-ary product operations.
Moreover, the ω-ary product operations
give rise to nω-power operations.
We show that those Σ-labeled n-posets that can be generated from
the singletons by the binary and ω-ary
product operations form the free algebra on Σ
in a variety axiomatizable by an infinite collection...
Let be an infinite locally finite tree. We say that has exactly one end, if in any two one-way infinite paths have a common rest (infinite subpath). The paper describes the structure of such trees and tries to formalize it by algebraic means, namely by means of acyclic monounary algebras or tree semilattices. In these algebraic structures the homomorpisms and direct products are considered and investigated with the aim of showing, whether they give algebras with the required properties. At...
The clone lattice Cl(X) over an infinite set X is a complete algebraic lattice with compact elements. We show that every algebraic lattice with at most compact elements is a complete sublattice of Cl(X).
In Universal Algebra, identities are used to classify algebras into collections, called varieties and hyperidentities are use to classify varieties into collections, called hypervarities. The concept of a hypersubstitution is a tool to study hyperidentities and hypervarieties.
Generalized hypersubstitutions and strong identities generalize the concepts of a hypersubstitution and of a hyperidentity, respectively. The set of all generalized hypersubstitutions forms a monoid. In...
Characterizations of 'almost associative' binary operations generating a minimal clone are given for two interpretations of the term 'almost associative'. One of them uses the associative spectrum, the other one uses the index of nonassociativity to measure how far an operation is from being associative.
Currently displaying 101 –
120 of
150