Characterization of power digraphs modulo
A power digraph modulo , denoted by , is a directed graph with as the set of vertices and as the edge set, where and are any positive integers. In this paper we find necessary and sufficient conditions on and such that the digraph has at least one isolated fixed point. We also establish necessary and sufficient conditions on and such that the digraph contains exactly two components. The primality of Fermat number is also discussed.