O devátém Hilbertově problému
We assign to each positive integer a digraph whose set of vertices is and for which there is a directed edge from to if . We establish necessary and sufficient conditions for the existence of isolated fixed points. We also examine when the digraph is semiregular. Moreover, we present simple conditions for the number of components and length of cycles. Two new necessary and sufficient conditions for the compositeness of Fermat numbers are also introduced.
What should be assumed about the integral polynomials in order that the solvability of the congruence for sufficiently large primes p implies the solvability of the equation in integers x? We provide some explicit characterizations for the cases when are binomials or have cyclic splitting fields.
We assign to each pair of positive integers and a digraph whose set of vertices is and for which there is a directed edge from to if . The digraph is semiregular if there exists a positive integer such that each vertex of the digraph has indegree or 0. Generalizing earlier results of the authors for the case in which , we characterize all semiregular digraphs when is arbitrary.