Multiplication par un entier d'une fraction continue périodique
Let be a sequence of bases with . In the case when the are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose -Cantor series expansion is both -normal and -distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of , and from this construction we can provide computable constructions of numbers with atypical normality properties.
Let and denote by the sum-of-digits function in base . For considerIn 1983, F. M. Dekking conjectured that this quantity is greater than and, respectively, less than for infinitely many , thereby claiming an absence of a drift (or Newman) phenomenon. In this paper we prove his conjecture.
We answer a question of Bednarek proposed at the 9th Polish, Slovak and Czech conference in Number Theory.
The goal of this paper is to outline the proof of a conjecture of Gelfond [6] (1968) in a recent work in collaboration with Christian Mauduit [11] concerning the sum of digits of prime numbers, reflecting the lecture given in Edinburgh at the Journées Arithmétiques 2007.