Congruences for the Stirling numbers and associated Stirling numbers
F. Howard (1990)
Acta Arithmetica
Romeo Meštrović (2015)
Czechoslovak Mathematical Journal
A prime is said to be a Wolstenholme prime if it satisfies the congruence . For such a prime , we establish an expression for given in terms of the sums (. Further, the expression in this congruence is reduced in terms of the sums (). Using this congruence, we prove that for any Wolstenholme prime we have Moreover, using a recent result of the author, we prove that a prime satisfying the above congruence must necessarily be a Wolstenholme prime. Furthermore, applying a technique...
Tauraso, Roberto (2010)
The Electronic Journal of Combinatorics [electronic only]
Romeo Meštrović (2013)
Czechoslovak Mathematical Journal
Let be a prime, and let be the Fermat quotient of to base . In this note we prove that which is a generalization of a congruence due to Z. H. Sun. Our proof is based on certain combinatorial identities and congruences for some alternating harmonic sums. Combining the above congruence with two congruences by Z. H. Sun, we show that which is just a result established by K. Dilcher and L. Skula. As another application, we obtain a congruence for the sum modulo that also generalizes a...
Mattarei, Sandro, Tauraso, Roberto (2010)
Journal of Integer Sequences [electronic only]
Chen, Yonggao, Dai, Lixia (2006)
Integers
Akiyama, Shigeki, Gjini, Nertila (2005)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Stanislav Jakubec (1995)
Acta Arithmetica
R. A. Mollin, H. C. Williams (1992)
Acta Arithmetica
William D. Banks, Tristan Freiberg, Caroline L. Turnage-Butterbaugh (2015)
Acta Arithmetica
In a stunning new advance towards the Prime k-Tuple Conjecture, Maynard and Tao have shown that if k is sufficiently large in terms of m, then for an admissible k-tuple of linear forms in ℤ[x], the set contains at least m primes for infinitely many n ∈ ℕ. In this note, we deduce that contains at least m consecutive primes for infinitely many n ∈ ℕ. We answer an old question of Erdős and Turán by producing strings of m + 1 consecutive primes whose successive gaps form an increasing (resp....
Panaitopol, Laurenţiu (2001)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Paul Mercat (2013)
Journal de Théorie des Nombres de Bordeaux
Nous construisons, dans les corps quadratiques réels, une infinité de fractions continues périodiques uniformément bornées, avec une borne qui semble meilleure que celle connue jusqu’ici. Nous faisons cela en partant de développements en fractions continues de la même forme que ceux des réels . Et ceci nous permet d’obtenir de plus qu’il existe une infinité de corps quadratiques contenant une infinité de développements en fractions continues périodiques formées seulement des entiers et . Nous...
Mollin, R.A. (2003)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Manfred G. Madritsch (2014)
Acta Arithmetica
We construct normal numbers in base q by concatenating q-ary expansions of pseudo-polynomials evaluated at primes. This extends a recent result by Tichy and the author.
Bill Mance (2011)
Acta Arithmetica
Michal Křížek, Alena Šolcová, Lawrence Somer (2007)
Commentationes Mathematicae Universitatis Carolinae
We found that there is a remarkable relationship between the triangular numbers and the astronomical clock (horologe) of Prague. We introduce Šindel sequences of natural numbers as those periodic sequences with period that satisfy the following condition: for any there exists such that . We shall see that this condition guarantees a functioning of the bellworks, which is controlled by the horologe. We give a necessary and sufficient condition for a periodic sequence to be a Šindel sequence....
Jani, Mahendra, Rieper, Robert G. (2000)
The Electronic Journal of Combinatorics [electronic only]
Mollin, Richard A. (2001)
International Journal of Mathematics and Mathematical Sciences
Dean Hickerson (1977)
Journal für die reine und angewandte Mathematik
Bates, Bruce, Bunder, Martin, Tognetti, Keith (2005)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]