Continued fractions, Fibonacci numbers, and some classes of irrational numbers.
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
We use the estimation of the number of integers such that belongs to an arithmetic progression to study the coprimality of integers in , , .
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
Theorem 1 of J.-J. Lee, Congruences for certain binomial sums. Czech. Math. J. 63 (2013), 65–71, is incorrect as it stands. We correct this here. The final result is changed, but the essential idea of above mentioned paper remains valid.