A note on pseudoprimes with respect to abelian linear recurring sequence
It is clear that every rational surgery on a Hopf link in -sphere is a lens space surgery. In this note we give an explicit computation which lens space is a resulting manifold. The main tool we use is the calculus of continued fractions. As a corollary, we recover the (well-known) result on the criterion for when rational surgery on a Hopf link gives the -sphere.
The paper studies the structure of the ring A of arithmetical functions, where the multiplication is defined as the Dirichlet convolution. It is proven that A itself is not a discrete valuation ring, but a certain extension of it is constructed,this extension being a discrete valuation ring. Finally, the metric structure of the ring A is examined.
In the paper we discuss the following type congruences: where is a prime, , , and are various positive integers with , and . Given positive integers and , denote by the set of all primes such that the above congruence holds for every pair of integers . Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets and inclusion relations between them for various values and . In particular, we prove that for all , and , and for...
We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic sturmian sequences. As a corollary to our study we obtain that a real number in is univoque and self-sturmian if and only if the -expansion of is of the form , where is a characteristic...
We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic Sturmian sequences. As a corollary to our study we obtain that a real number β in (1,2) is univoque and self-Sturmian if and only if the β-expansion of 1 is of the form 1v, where v is a characteristic...