Displaying 1001 – 1020 of 1815

Showing per page

On ternary quadratic forms over the rational numbers

Amir Jafari, Farhood Rostamkhani (2022)

Czechoslovak Mathematical Journal

For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.

On the arithmetic of arithmetical congruence monoids

M. Banister, J. Chaika, S. T. Chapman, W. Meyerson (2007)

Colloquium Mathematicae

Let ℕ represent the positive integers and ℕ₀ the non-negative integers. If b ∈ ℕ and Γ is a multiplicatively closed subset of b = / b , then the set H Γ = x | x + b Γ 1 is a multiplicative submonoid of ℕ known as a congruence monoid. An arithmetical congruence monoid (or ACM) is a congruence monoid where Γ = ā consists of a single element. If H Γ is an ACM, then we represent it with the notation M(a,b) = (a + bℕ₀) ∪ 1, where a, b ∈ ℕ and a² ≡ a (mod b). A classical 1954 result of James and Niven implies that the only ACM...

On the basic character of residue classes.

Peter J. Hilton, Jennifer Hooper, Jean Pedersen (1989)

Publicacions Matemàtiques

Let t, b be mutually prime positive integers. We say that the residue class t mod b is basic if there exists n such that tn ≡ -1 mod b; otherwise t is not basic. In this paper we relate the basic character of t mod b to the quadratic character of t modulo the prime factors of b. If all prime factors p of b satisfy p ≡ 3 mod 4, then t is basic mod b if t is a quadratic non-residue mod p for all such p; and t is not basic mod b if t is a quadratic residue mod p for all such p. If, for all prime factors...

On the binary expansions of algebraic numbers

David H. Bailey, Jonathan M. Borwein, Richard E. Crandall, Carl Pomerance (2004)

Journal de Théorie des Nombres de Bordeaux

Employing concepts from additive number theory, together with results on binary evaluations and partial series, we establish bounds on the density of 1’s in the binary expansions of real algebraic numbers. A central result is that if a real y has algebraic degree D > 1 , then the number # ( | y | , N ) of 1-bits in the expansion of | y | through bit position N satisfies # ( | y | , N ) > C N 1 / D for a positive number C (depending on y ) and sufficiently large N . This in itself establishes the transcendency of a class of reals n 0 1 / 2 f ( n ) where the integer-valued...

On the composition of the Euler function and the sum of divisors function

Jean-Marie De Koninck, Florian Luca (2007)

Colloquium Mathematicae

Let H(n) = σ(ϕ(n))/ϕ(σ(n)), where ϕ(n) is Euler's function and σ(n) stands for the sum of the positive divisors of n. We obtain the maximal and minimal orders of H(n) as well as its average order, and we also prove two density theorems. In particular, we answer a question raised by Golomb.

Currently displaying 1001 – 1020 of 1815