Displaying 1441 – 1460 of 1815

Showing per page

Square-free Lucas d -pseudoprimes and Carmichael-Lucas numbers

Walter Carlip, Lawrence Somer (2007)

Czechoslovak Mathematical Journal

Let d be a fixed positive integer. A Lucas d -pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U ( P , Q ) such that the rank of N in U ( P , Q ) is exactly ( N - ε ( N ) ) / d , where ε is the signature of U ( P , Q ) . We prove here that all but a finite number of Lucas d -pseudoprimes are square free. We also prove that all but a finite number of Lucas d -pseudoprimes are Carmichael-Lucas numbers.

Stabilization of the wave equation by on-off and positive-negative feedbacks

Patrick Martinez, Judith Vancostenoble (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback a ( t ) u t . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions a : typically a is equal to 1 on ( 0 , T ) , equal to 0 on ( T , q T ) and is q T -periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability. In both cases,...

Stabilization of the wave equation by on-off and positive-negative feedbacks

Patrick Martinez, Judith Vancostenoble (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motivated by several works on the stabilization of the oscillator by on-off feedbacks, we study the related problem for the one-dimensional wave equation, damped by an on-off feedback a ( t ) u t . We obtain results that are radically different from those known in the case of the oscillator. We consider periodic functions a: typically a is equal to 1 on (0,T), equal to 0 on (T, qT) and is qT-periodic. We study the boundary case and next the locally distributed case, and we give optimal results of stability....

Strongly automatic semigroups

Paul Mercat (2013)

Bulletin de la Société Mathématique de France

Dans cet article, nous introduisons la notion de semi-groupe fortement automatique, qui entraîne la notion d’automaticité des semi-groupes usuelle. On s’intéresse particulièrement aux semi-groupes de développements en base β , pour lesquels on obtient un critère de forte automaticité.

Structure of cubic mapping graphs for the ring of Gaussian integers modulo n

Yangjiang Wei, Jizhu Nan, Gaohua Tang (2012)

Czechoslovak Mathematical Journal

Let n [ i ] be the ring of Gaussian integers modulo n . We construct for n [ i ] a cubic mapping graph Γ ( n ) whose vertex set is all the elements of n [ i ] and for which there is a directed edge from a n [ i ] to b n [ i ] if b = a 3 . This article investigates in detail the structure of Γ ( n ) . We give suffcient and necessary conditions for the existence of cycles with length t . The number of t -cycles in Γ 1 ( n ) is obtained and we also examine when a vertex lies on a t -cycle of Γ 2 ( n ) , where Γ 1 ( n ) is induced by all the units of n [ i ] while Γ 2 ( n ) is induced by all the...

Substitutions, abstract number systems and the space filling property

Clemens Fuchs, Robert Tijdeman (2006)

Annales de l’institut Fourier

In this paper we study multi-dimensional words generated by fixed points of substitutions by projecting the integer points on the corresponding broken halfline. We show for a large class of substitutions that the resulting word is the restriction of a linear function modulo 1 and that it can be decided whether the resulting word is space filling or not. The proof uses lattices and the abstract number system associated with the substitution.

Sum of higher divisor function with prime summands

Yuchen Ding, Guang-Liang Zhou (2023)

Czechoslovak Mathematical Journal

Let l 2 be an integer. Recently, Hu and Lü offered the asymptotic formula for the sum of the higher divisor function 1 n 1 , n 2 , ... , n l x 1 / 2 τ k ( n 1 2 + n 2 2 + + n l 2 ) , where τ k ( n ) represents the k th divisor function. We give the Goldbach-type analogy of their result. That is to say, we investigate the asymptotic behavior of the sum 1 p 1 , p 2 , ... , p l x τ k ( p 1 + p 2 + + p l ) , where p 1 , p 2 , , p l are prime variables.

Currently displaying 1441 – 1460 of 1815