Displaying 2201 – 2220 of 2472

Showing per page

The cube recurrence.

Carroll, Gabriel D., Speyer, David (2004)

The Electronic Journal of Combinatorics [electronic only]

The cyclicity problem for the images of Q-rational series

Juha Honkala (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

The cyclicity problem for the images of Q-rational series

Juha Honkala (2012)

RAIRO - Theoretical Informatics and Applications

We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

The Davenport constant of a box

Alain Plagne (2015)

Acta Arithmetica

Given an additively written abelian group G and a set X ⊆ G, we let (X) denote the monoid of zero-sum sequences over X and (X) the Davenport constant of (X), namely the supremum of the positive integers n for which there exists a sequence x₁⋯xₙ in (X) such that i I x i 0 for each non-empty proper subset I of 1,...,n. In this paper, we mainly investigate the case when G is a power of ℤ and X is a box (i.e., a product of intervals of G). Some mixed sets (e.g., the product of a group by a box) are studied...

The Diophantine equation D x ² + 2 2 m + 1 = y

J. H. E. Cohn (2003)

Colloquium Mathematicae

It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14 (mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not divide the class number of the imaginary quadratic field containing √(-2D), except for a small number of (stated) exceptions.

The distribution of the sum-of-digits function

Michael Drmota, Johannes Gajdosik (1998)

Journal de théorie des nombres de Bordeaux

By using a generating function approach it is shown that the sum-of-digits function (related to specific finite and infinite linear recurrences) satisfies a central limit theorem. Additionally a local limit theorem is derived.

The EKG sequence.

Lagarias, J.C., Rains, E.M., Sloane, N.J.A. (2002)

Experimental Mathematics

Currently displaying 2201 – 2220 of 2472