The complexity of uniform distribution
We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.
We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.
Given an additively written abelian group G and a set X ⊆ G, we let (X) denote the monoid of zero-sum sequences over X and (X) the Davenport constant of (X), namely the supremum of the positive integers n for which there exists a sequence x₁⋯xₙ in (X) such that for each non-empty proper subset I of 1,...,n. In this paper, we mainly investigate the case when G is a power of ℤ and X is a box (i.e., a product of intervals of G). Some mixed sets (e.g., the product of a group by a box) are studied...
It is shown that for a given squarefree positive integer D, the equation of the title has no solutions in integers x > 0, m > 0, n ≥ 3 and y odd, nor unless D ≡ 14 (mod 16) in integers x > 0, m = 0, n ≥ 3, y > 0, provided in each case that n does not divide the class number of the imaginary quadratic field containing √(-2D), except for a small number of (stated) exceptions.
By using a generating function approach it is shown that the sum-of-digits function (related to specific finite and infinite linear recurrences) satisfies a central limit theorem. Additionally a local limit theorem is derived.