Arithmetic properties of Bell numbers to a composite modulus I
For k = 1,2,... let denote the harmonic number . In this paper we establish some new congruences involving harmonic numbers. For example, we show that for any prime p > 3 we have , , and for any positive integer n < (p-1)/6, where B₀,B₁,B₂,... are Bernoulli numbers, and .
The classical system of functional equations (n ∈ ℕ) with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to (n ∈ ℕ) with complex valued sequences . This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.
We present asymptotic representations for certain reciprocal sums of Fibonacci numbers and of Lucas numbers as a parameter tends to a critical value. As limiting cases of our results, we obtain Euler’s formulas for values of zeta functions.