Displaying 1081 – 1100 of 2472

Showing per page

Nonanalyticity of solutions to t u = ² x u + u ²

Grzegorz Łysik (2003)

Colloquium Mathematicae

It is proved that the solution to the initial value problem t u = ² x u + u ² , u(0,x) = 1/(1+x²), does not belong to the Gevrey class G s in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.

Noncirculant Toeplitz matrices all of whose powers are Toeplitz

Kent Griffin, Jeffrey L. Stuart, Michael J. Tsatsomeros (2008)

Czechoslovak Mathematical Journal

Let a , b and c be fixed complex numbers. Let M n ( a , b , c ) be the n × n Toeplitz matrix all of whose entries above the diagonal are a , all of whose entries below the diagonal are b , and all of whose entries on the diagonal are c . For 1 k n , each k × k principal minor of M n ( a , b , c ) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of M n ( a , b , c ) . We also show that all complex polynomials in M n ( a , b , c ) are Toeplitz matrices. In particular, the inverse of M n ( a , b , c ) is a Toeplitz matrix when...

Non-degenerate Hilbert cubes in random sets

Csaba Sándor (2007)

Journal de Théorie des Nombres de Bordeaux

A slight modification of the proof of Szemerédi’s cube lemma gives that if a set S [ 1 , n ] satisfies | S | n 2 , then S must contain a non-degenerate Hilbert cube of dimension log 2 log 2 n - 3 . In this paper we prove that in a random set S determined by Pr { s S } = 1 2 for 1 s n , the maximal dimension of non-degenerate Hilbert cubes is a.e. nearly log 2 log 2 n + log 2 log 2 log 2 n and determine the threshold function for a non-degenerate k -cube.

Nonvanishing of a certain Bernoulli number and a related topic

Humio Ichimura (2013)

Acta Arithmetica

Let p = 1 + 2 e + 1 q be an odd prime number with q an odd integer. Let δ (resp. φ) be an odd (resp. even) Dirichlet character of conductor p and order 2 e + 1 (resp. order d φ dividing q), and let ψₙ be an even character of conductor p n + 1 and order pⁿ. We put χ = δφψₙ, whose value is contained in K = ( ζ ( p - 1 ) p ) . It is well known that the Bernoulli number B 1 , χ is not zero, which is shown in an analytic way. In the extreme cases d φ = 1 and q, we show, in an algebraic and elementary manner, a stronger nonvanishing result: T r n / 1 ( ξ B 1 , χ ) 0 for any pⁿth root ξ...

(Non-)weakly mixing operators and hypercyclicity sets

Frédéric Bayart, Étienne Matheron (2009)

Annales de l’institut Fourier

We study the frequency of hypercyclicity of hypercyclic, non–weakly mixing linear operators. In particular, we show that on the space 1 ( ) , any sublinear frequency can be realized by a non–weakly mixing operator. A weaker but similar result is obtained for c 0 ( ) or p ( ) , 1 &lt; p &lt; . Part of our results is related to some Sidon-type lacunarity properties for sequences of natural numbers.

Currently displaying 1081 – 1100 of 2472