Displaying 1141 – 1160 of 2472

Showing per page

On a binary recurrent sequence of polynomials

Reinhardt Euler, Luis H. Gallardo, Florian Luca (2014)

Communications in Mathematics

In this paper, we study the properties of the sequence of polynomials given by g 0 = 0 , g 1 = 1 , g n + 1 = g n + Δ g n - 1 for n 1 , where Δ 𝔽 q [ t ] is non-constant and the characteristic of 𝔽 q is 2 . This complements some results from R. Euler, L.H. Gallardo: On explicit formulae and linear recurrent sequences, Acta Math. Univ. Comenianae, 80 (2011) 213-219.

On a certain class of arithmetic functions

Antonio M. Oller-Marcén (2017)

Mathematica Bohemica

A homothetic arithmetic function of ratio K is a function f : R such that f ( K n ) = f ( n ) for every n . Periodic arithmetic funtions are always homothetic, while the converse is not true in general. In this paper we study homothetic and periodic arithmetic functions. In particular we give an upper bound for the number of elements of f ( ) in terms of the period and the ratio of f .

On a congruence of Emma Lehmer related to Euler numbers

John B. Cosgrave, Karl Dilcher (2013)

Acta Arithmetica

A congruence of Emma Lehmer (1938) for Euler numbers E p - 3 modulo p in terms of a certain sum of reciprocals of squares of integers was recently extended to prime power moduli by T. Cai et al. We generalize this further to arbitrary composite moduli n and characterize those n for which the sum in question vanishes modulo n (or modulo n/3 when 3|n). Primes for which E p - 3 0 ( m o d p ) play an important role, and we present some numerical results.

On a conjecture of Sárközy and Szemerédi

Yong-Gao Chen (2015)

Acta Arithmetica

Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(minA(x),B(x)), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1,...

Currently displaying 1141 – 1160 of 2472