Displaying 101 – 120 of 173

Showing per page

The postage stamp problem and arithmetic in base r

Amitabha Tripathi (2008)

Czechoslovak Mathematical Journal

Let h , k be fixed positive integers, and let A be any set of positive integers. Let h A : = { a 1 + a 2 + + a r : a i A , r h } denote the set of all integers representable as a sum of no more than h elements of A , and let n ( h , A ) denote the largest integer n such that { 1 , 2 , ... , n } h A . Let n ( h , k ) : = max A : n ( h , A ) , where the maximum is taken over all sets A with k elements. We determine n ( h , A ) when the elements of A are in geometric progression. In particular, this results in the evaluation of n ( h , 2 ) and yields surprisingly sharp lower bounds for n ( h , k ) , particularly for k = 3 .

The sequence of fractional parts of roots

Kevin O'Bryant (2015)

Acta Arithmetica

We study the function M θ ( n ) = 1 / θ 1 / n , where θ is a positive real number, ⌊·⌋ and · are the floor and fractional part functions, respectively. Nathanson proved, among other properties of M θ , that if log θ is rational, then for all but finitely many positive integers n, M θ ( n ) = n / l o g θ - 1 / 2 . We extend this by showing that, without any condition on θ, all but a zero-density set of integers n satisfy M θ ( n ) = n / l o g θ - 1 / 2 . Using a metric result of Schmidt, we show that almost all θ have asymptotically (log θ log x)/12 exceptional n ≤ x. Using continued...

The set of minimal distances in Krull monoids

Alfred Geroldinger, Qinghai Zhong (2016)

Acta Arithmetica

Let H be a Krull monoid with class group G. Then every nonunit a ∈ H can be written as a finite product of atoms, say a = u 1 · . . . · u k . The set (a) of all possible factorization lengths k is called the set of lengths of a. If G is finite, then there is a constant M ∈ ℕ such that all sets of lengths are almost arithmetical multiprogressions with bound M and with difference d ∈ Δ*(H), where Δ*(H) denotes the set of minimal distances of H. We show that max Δ*(H) ≤ maxexp(G)-2,(G)-1 and that equality holds if every...

Currently displaying 101 – 120 of 173