Displaying 141 – 160 of 197

Showing per page

Searching for Diophantine quintuples

Mihai Cipu, Tim Trudgian (2016)

Acta Arithmetica

We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most 5 . 441 · 10 26 Diophantine quintuples.

Solutions of x³+y³+z³=nxyz

Erik Dofs (1995)

Acta Arithmetica

The diophantine equation (1) x³ + y³ + z³ = nxyz has only trivial solutions for three (probably) infinite sets of n-values and some other n-values ([7], Chs. 10, 15, [3], [2]). The main set is characterized by: n²+3n+9 is a prime number, n-3 contains no prime factor ≡ 1 (mod 3) and n ≠ - 1,5. Conversely, equation (1) is known to have non-trivial solutions for infinitely many n-values. These solutions were given either as "1 chains" ([7], Ch. 30, [4], [6]), as recursive...

Sur les carrés dans certaines suites de Lucas

Maurice Mignotte, Attila Pethö (1993)

Journal de théorie des nombres de Bordeaux

Soit a un entier 3 . Pour α = ( a + a 2 - 4 ) / 2 et β = ( a - a 2 - 4 ) / 2 , nous considérons la suite de Lucas 𝑢 𝑛 = ( α 𝑛 - β 𝑛 ) / ( α - β ) . Nous montrons que, pour a 4 , 𝑢 𝑛 n’est ni un carré, ni le double, ni le triple d’un carré, ni six fois un carré pour n > 3 sauf si a = 338 et n = 4 .

Currently displaying 141 – 160 of 197