Page 1

Displaying 1 – 8 of 8

Showing per page

Leonard Dickson’s History of the Theory of Numbers: An historical study with mathematical implications

Della D. Fenster (1999)

Revue d'histoire des mathématiques

In 1911, the research mathematician Leonard Dickson embarked on a historical study of the theory of numbers which culminated in the publication of his three-volume History of the Theory of Numbers. This paper discusses the genesis of this work, the historiographic style revealed therein, and the mathematical contributions which arose out of it.

Les nombres de Lucas et Lehmer sans diviseur primitif

Mourad Abouzaid (2006)

Journal de Théorie des Nombres de Bordeaux

Y. Bilu, G. Hanrot et P.M. Voutier ont montré que pour toute paire de Lucas ou de Lehmer ( α , β ) et pour tout n > 30 , les entiers, dits nombres de Lucas (ou de Lehmer) u n ( α , β ) admettaient un diviseur primitif. L’objet de ce papier est de compléter la liste des nombres de Lucas et de Lehmer défectueux donnée par P.M. Voutier, afin d’en avoir une liste exhaustive.

Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains

Yong HU (2012)

Annales de l’institut Fourier

Let R be a 2-dimensional normal excellent henselian local domain in which 2 is invertible and let L and k be its fraction field and residue field respectively. Let Ω R be the set of rank 1 discrete valuations of L corresponding to codimension 1 points of regular proper models of Spec R . We prove that a quadratic form q over L satisfies the local-global principle with respect to Ω R in the following two cases: (1) q has rank 3 or 4; (2) q has rank 5 and R = A [ [ y ] ] , where A is a complete discrete valuation ring with...

Currently displaying 1 – 8 of 8

Page 1