Displaying 241 – 260 of 330

Showing per page

Some observations on the Diophantine equation f(x)f(y) = f(z)²

Yong Zhang (2016)

Colloquium Mathematicae

Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.

Superelliptic equations arising from sums of consecutive powers

Michael A. Bennett, Vandita Patel, Samir Siksek (2016)

Acta Arithmetica

Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization ( x - 1 ) k + x k + ( x + 1 ) k = z n (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...

Sur les carrés dans certaines suites de Lucas

Maurice Mignotte, Attila Pethö (1993)

Journal de théorie des nombres de Bordeaux

Soit a un entier 3 . Pour α = ( a + a 2 - 4 ) / 2 et β = ( a - a 2 - 4 ) / 2 , nous considérons la suite de Lucas 𝑢 𝑛 = ( α 𝑛 - β 𝑛 ) / ( α - β ) . Nous montrons que, pour a 4 , 𝑢 𝑛 n’est ni un carré, ni le double, ni le triple d’un carré, ni six fois un carré pour n > 3 sauf si a = 338 et n = 4 .

Currently displaying 241 – 260 of 330