Perfect powers with all equal digits but one.
The sequence of balancing numbers is defined by the recurrence relation for with initial conditions and is called the th balancing number. In this paper, we find all repdigits in the base which are sums of four balancing numbers. As a result of our theorem,...
Let k ∈ ℤ be such that , where . We determine all solutions to xyz = 1 and x + y + z = k in integers of number fields of degree at most four over ℚ.
Using only elementary arguments, Cassels solved the Diophantine equation (x-1)³ + x³ + (x+1)³ = z² (with x, z ∈ ℤ). The generalization (with x, z, n ∈ ℤ and n ≥ 2) was considered by Zhongfeng Zhang who solved it for k ∈ 2,3,4 using Frey-Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for k = 5 have x = z = 0, and that there are no solutions for k = 6. The chief innovation...