Page 1

Displaying 1 – 12 of 12

Showing per page

Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch

F. Crauste (2009)

Mathematical Modelling of Natural Phenomena

A nonlinear system of two delay differential equations is proposed to model hematopoietic stem cell dynamics. Each equation describes the evolution of a sub-population, either proliferating or nonproliferating. The nonlinearity accounting for introduction of nonproliferating cells in the proliferating phase is assumed to depend upon the total number of cells. Existence and stability of steady states are investigated. A Lyapunov functional is built to obtain the global asymptotic stability of the...

Determinanti polinomiali-esponenziali

Raffaele Marcovecchio (2004)

Bollettino dell'Unione Matematica Italiana

Dati m = 2 o m = 3 numeri algebrici non nulli α = α 1 , , α m tali che α j / α l non è una radice dell'unità per ogni j l , consideriamo una classe di determinanti di Vandermonde generalizzati di ordine quattro G a ; x , al variare di x in Z 4 , connessa con alcuni problemi diofantei. Dimostriamo che il numero delle soluzioni y Z 3 in posizione generica dell'equazione polinomiale-esponenziale disomogenea G a ; 0 , y = 0 non supera una costante esplicita N d dipendente solo da d = [ Q ( α 1 , , α m ) : Q ] .

Diophantine equations after Fermat’s last theorem

Samir Siksek (2009)

Journal de Théorie des Nombres de Bordeaux

These are expository notes that accompany my talk at the 25th Journées Arithmétiques, July 2–6, 2007, Edinburgh, Scotland. I aim to shed light on the following two questions:(i)Given a Diophantine equation, what information can be obtained by following the strategy of Wiles’ proof of Fermat’s Last Theorem?(ii)Is it useful to combine this approach with traditional approaches to Diophantine equations: Diophantine approximation, arithmetic geometry, ...?

Diophantine equations involving factorials

Horst Alzer, Florian Luca (2017)

Mathematica Bohemica

We study the Diophantine equations ( k ! ) n - k n = ( n ! ) k - n k and ( k ! ) n + k n = ( n ! ) k + n k , where k and n are positive integers. We show that the first one holds if and only if k = n or ( k , n ) = ( 1 , 2 ) , ( 2 , 1 ) and that the second one holds if and only if k = n .

Diophantine inequalities with power sums

Amedeo Scremin (2007)

Journal de Théorie des Nombres de Bordeaux

The ring of power sums is formed by complex functions on of the form α ( n ) = b 1 c 1 n + b 2 c 2 n + ... + b h c h n , for some b i ¯ and c i . Let F ( x , y ) ¯ [ x , y ] be absolutely irreducible, monic and of degree at least 2 in y . We consider Diophantine inequalities of the form | F ( α ( n ) , y ) | < | F y ( α ( n ) , y ) | · | α ( n ) | - ε and show that all the solutions ( n , y ) × have y parametrized by some power sums in a finite set. As a consequence, we prove that the equation F ( α ( n ) , y ) = f ( n ) , with f [ x ] not constant, F monic in y and α not constant, has only finitely many solutions.

Diophantine triples with values in binary recurrences

Clemens Fuchs, Florian Luca, Laszlo Szalay (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we study triples a , b and c of distinct positive integers such that a b + 1 , a c + 1 and b c + 1 are all three members of the same binary recurrence sequence.

Currently displaying 1 – 12 of 12

Page 1