Displaying 81 – 100 of 239

Showing per page

On a system of equations with primes

Paolo Leonetti, Salvatore Tringali (2014)

Journal de Théorie des Nombres de Bordeaux

Given an integer n 3 , let u 1 , ... , u n be pairwise coprime integers 2 , 𝒟 a family of nonempty proper subsets of { 1 , ... , n } with “enough” elements, and ε a function 𝒟 { ± 1 } . Does there exist at least one prime q such that q divides i I u i - ε ( I ) for some I 𝒟 , but it does not divide u 1 u n ? We answer this question in the positive when the u i are prime powers and ε and 𝒟 are subjected to certain restrictions.We use the result to prove that, if ε 0 { ± 1 } and A is a set of three or more primes that contains all prime divisors of any number of the form p B p - ε 0 for...

On blocks of arithmetic progressions with equal products

N. Saradha (1997)

Journal de théorie des nombres de Bordeaux

Let f ( X ) [ X ] be a monic polynomial which is a power of a polynomial g ( X ) [ X ] of degree μ 2 and having simple real roots. For given positive integers d 1 , d 2 , , m with < m and gcd ( , m ) = 1 with μ m + 1 whenever m < 2 , we show that the equation f ( x ) f ( x + d 1 ) f ( x + ( k - 1 ) d 1 ) = f ( y ) f ( y + d 2 ) f ( y + ( m k - 1 ) d 2 ) with f ( x + j d 1 ) 0 for 0 j < k has only finitely many solutions in integers x , y and k 1 except in the case m = μ = 2 , = k = d 2 = 1 , f ( X ) = g ( X ) , x = f ( y ) + y .

On k -Pell numbers which are sum of two Narayana’s cows numbers

Kouèssi Norbert Adédji, Mohamadou Bachabi, Alain Togbé (2025)

Mathematica Bohemica

For any positive integer k 2 , let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence which starts with 0 , , 0 , 1 ( k terms) with the linear recurrence P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 . Let ( N n ) n 0 be Narayana’s sequence given by N 0 = N 1 = N 2 = 1 and N n + 3 = N n + 2 + N n . The purpose of this paper is to determine all k -Pell numbers which are sums of two Narayana’s numbers. More precisely, we study the Diophantine equation P p ( k ) = N n + N m in nonnegative integers k , p , n and m .

On Obláth's problem.

Gica, Alexandru, Panaitopol, Laurenţiu (2003)

Journal of Integer Sequences [electronic only]

On perfect powers in k -generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş (2023)

Mathematica Bohemica

Let k 2 and let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence defined by P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 with initial conditions P - ( k - 2 ) ( k ) = P - ( k - 3 ) ( k ) = = P - 1 ( k ) = P 0 ( k ) = 0 , P 1 ( k ) = 1 . In this study, we handle the equation P n ( k ) = y m in positive integers n , m , y , k such that k , y 2 , and give an upper bound on n . Also, we will show that the equation P n ( k ) = y m with 2 y 1000 has only one solution given by P 7 ( 2 ) = 13 2 .

Currently displaying 81 – 100 of 239