Displaying 21 – 40 of 104

Showing per page

Diophantine triples with values in binary recurrences

Clemens Fuchs, Florian Luca, Laszlo Szalay (2008)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we study triples a , b and c of distinct positive integers such that a b + 1 , a c + 1 and b c + 1 are all three members of the same binary recurrence sequence.

Division-ample sets and the Diophantine problem for rings of integers

Gunther Cornelissen, Thanases Pheidas, Karim Zahidi (2005)

Journal de Théorie des Nombres de Bordeaux

We prove that Hilbert’s Tenth Problem for a ring of integers in a number field K has a negative answer if K satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over K ). We relate division-ample sets to arithmetic of abelian varieties.

Expansions of binary recurrences in the additive base formed by the number of divisors of the factorial

Florian Luca, Augustine O. Munagi (2014)

Colloquium Mathematicae

We note that every positive integer N has a representation as a sum of distinct members of the sequence d ( n ! ) n 1 , where d(m) is the number of divisors of m. When N is a member of a binary recurrence u = u n 1 satisfying some mild technical conditions, we show that the number of such summands tends to infinity with n at a rate of at least c₁logn/loglogn for some positive constant c₁. We also compute all the Fibonacci numbers of the form d(m!) and d(m₁!) + d(m₂)! for some positive integers m,m₁,m₂.

Imbrications entre le théorème de Mason, la descente de Belyi et les différentes formes de la conjecture ( a b c )

Michel Langevin (1999)

Journal de théorie des nombres de Bordeaux

Soient A , B , C = A + B trois éléments de l’ensemble * des entiers > 0 (resp. [ X ] ) des polynômes complexes) premiers entre eux ; on note r ( A B C ) le produit des facteurs premiers (resp. le nombre des facteurs premiers dans [ X ] ) du produit A B C . La conjecture ( a b c ) énonce que, pour tout ϵ > 0 , il existe C ϵ > 0 pour lequel l’inégalité : r ( A B C ) C ϵ S 1 - ϵ avec S = max ( A , B , C ) ) est toujours vérifiée. Le théorème de Mason établit l’inégalité, D (supposé > 0 ) désignant le plus grand des degrés des polynômes A , B , C : r ( A B C ) D + 1 . Les cas de triplets de polynômes où l’égalité...

Lucas sequences and repdigits

Hayder Raheem Hashim, Szabolcs Tengely (2022)

Mathematica Bohemica

Let ( G n ) n 1 be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are { U n } and { V n } , respectively. We show that the Diophantine equation G n = B · ( g l m - 1 ) / ( g l - 1 ) has only finitely many solutions in n , m + , where g 2 , l is even and 1 B g l - 1 . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on...

Method of infinite ascent applied on - ( 2 p · A 6 ) + B 3 = C 2

Susil Kumar Jena (2013)

Communications in Mathematics

In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for ( A , B , C ) of the Diophantine equation - ( 2 p · A 6 ) + B 3 = C 2 for any positive integral values of p when p 1 (mod 6) or p 2 (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.

Multiplicative dependence of shifted algebraic numbers

Paulius Drungilas, Artūras Dubickas (2003)

Colloquium Mathematicae

We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.

Currently displaying 21 – 40 of 104