Diophantine equation for four prime divisors of
In this paper the special diophantine equation with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of .
In this paper the special diophantine equation with integer coefficients is discussed and integer solutions are sought. This equation is solved completely just for four prime divisors of .
In this paper, we study triples and of distinct positive integers such that and are all three members of the same binary recurrence sequence.
We prove that Hilbert’s Tenth Problem for a ring of integers in a number field has a negative answer if satisfies two arithmetical conditions (existence of a so-called division-ample set of integers and of an elliptic curve of rank one over ). We relate division-ample sets to arithmetic of abelian varieties.
We note that every positive integer N has a representation as a sum of distinct members of the sequence , where d(m) is the number of divisors of m. When N is a member of a binary recurrence satisfying some mild technical conditions, we show that the number of such summands tends to infinity with n at a rate of at least c₁logn/loglogn for some positive constant c₁. We also compute all the Fibonacci numbers of the form d(m!) and d(m₁!) + d(m₂)! for some positive integers m,m₁,m₂.
Soient trois éléments de l’ensemble des entiers > (resp. ) des polynômes complexes) premiers entre eux ; on note le produit des facteurs premiers (resp. le nombre des facteurs premiers dans ) du produit . La conjecture énonce que, pour tout , il existe pour lequel l’inégalité : avec max) est toujours vérifiée. Le théorème de Mason établit l’inégalité, (supposé > ) désignant le plus grand des degrés des polynômes . Les cas de triplets de polynômes où l’égalité...
Let be a binary linear recurrence sequence that is represented by the Lucas sequences of the first and second kind, which are and , respectively. We show that the Diophantine equation has only finitely many solutions in , where , is even and . Furthermore, these solutions can be effectively determined by reducing such equation to biquadratic elliptic curves. Then, by a result of Baker (and its best improvement due to Hajdu and Herendi) related to the bounds of the integral points on...
In this paper, the author shows a technique of generating an infinite number of coprime integral solutions for of the Diophantine equation for any positive integral values of when (mod 6) or (mod 6). For doing this, we will be using a published result of this author in The Mathematics Student, a periodical of the Indian Mathematical Society.
We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.