Displaying 341 – 360 of 1554

Showing per page

Équations diophantiennes polynomiales à hautes multiplicités

Michel Langevin (2001)

Journal de théorie des nombres de Bordeaux

On montre comment écrire de grandes familles, avec de hautes multiplicités, de cas d’égalité A + B = C pour l’inégalité de Stothers-Mason (si A ( X ) , B ( X ) , C ( X ) sont des polynômes premiers entre eux, le nombre exact de racines du produit A B C dépasse de 1 le plus grand des degrés des composantes A , B , C ) . On développera pour cela des techniques polynomiales itératives inspirées des décompositions de Dunford-Schwartz et de fonctions de Belyi. Des exemples d’application avec les conjectures ( a b c ) ou de M. Hall sont développés.

Equations relating factors in decompositions into factors of some family of plane triangulations, and applications (with an appendix by Andrzej Schinzel)

Jan Florek (2015)

Colloquium Mathematicae

Let be the family of all 2-connected plane triangulations with vertices of degree three or six. Grünbaum and Motzkin proved (in dual terms) that every graph P ∈ has a decomposition into factors P₀, P₁, P₂ (indexed by elements of the cyclic group Q = 0,1,2) such that every factor P q consists of two induced paths of the same length M(q), and K(q) - 1 induced cycles of the same length 2M(q). For q ∈ Q, we define an integer S⁺(q) such that the vector (K(q),M(q),S⁺(q)) determines the graph P (if P is...

Currently displaying 341 – 360 of 1554