Fuchssche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichung x2 + y2 + z2 = xyz.
A set of m positive integers with the property that the product of any two of them is the predecessor of a perfect square is called a Diophantine m-tuple. Much work has been done attempting to prove that there exist no Diophantine quintuples. In this paper we give stringent conditions that should be met by a putative Diophantine quintuple. Among others, we show that any Diophantine quintuple a,b,c,d,e with a < b < c < d < ed < 1.55·1072b < 6.21·1035c = a + b + 2√(ab+1) and ...
Let E be an elliptic curve over the rationals ℚ given by y² = x³ - nx with a positive integer n. We consider first the case where n = N² for a square-free integer N. Then we show that if the Mordell-Weil group E(ℚ ) has rank one, there exist at most 17 integer points on E. Moreover, we show that for some parameterized N a certain point P can be in a system of generators for E(ℚ ), and we determine the integer points in the group generated by the point P and the torsion points. Secondly, we consider...
We study integral points and generators on cubic twists of the Fermat cubic curve. The main results assert that integral points can be in a system of generators in the case where the Mordell-Weil rank is at most two. As a corollary, we explicitly describe the integral points on the curve.
It is well known that the continued fraction expansion of readily displays the midpoint of the principal cycle of ideals, that is, the point halfway to a solution of . Here we notice that, analogously, the point halfway to a solution of can be recognised. We explain what is going on.