Previous Page 3

Displaying 41 – 45 of 45

Showing per page

Number of solutions in a box of a linear equation in an Abelian group

Maciej Zakarczemny (2016)

Colloquium Mathematicae

For every finite Abelian group Γ and for all g , a , . . . , a k Γ , if there exists a solution of the equation i = 1 k a i x i = g in non-negative integers x i b i , where b i are positive integers, then the number of such solutions is estimated from below in the best possible way.

Number of solutions of cubic Thue inequalities with positive discriminant

N. Saradha, Divyum Sharma (2015)

Acta Arithmetica

Let F(X,Y) be an irreducible binary cubic form with integer coefficients and positive discriminant D. Let k be a positive integer satisfying k < ( ( 3 D ) 1 / 4 ) / 2 π . We give improved upper bounds for the number of primitive solutions of the Thue inequality | F ( X , Y ) | k .

Numerical semigroups with a monotonic Apéry set

José Carlos Rosales, Pedro A. García-Sánchez, Juan Ignacio García-García, M. B. Branco (2005)

Czechoslovak Mathematical Journal

We study numerical semigroups S with the property that if m is the multiplicity of S and w ( i ) is the least element of S congruent with i modulo m , then 0 < w ( 1 ) < < w ( m - 1 ) . The set of numerical semigroups with this property and fixed multiplicity is bijective with an affine semigroup and consequently it can be described by a finite set of parameters. Invariants like the gender, type, embedding dimension and Frobenius number are computed for several families of this kind of numerical semigroups.

Currently displaying 41 – 45 of 45

Previous Page 3