Displaying 761 – 780 of 1554

Showing per page

On systems of diophantine equations with a large number of solutions

Jerzy Browkin (2010)

Colloquium Mathematicae

We consider systems of equations of the form x i + x j = x k and x i · x j = x k , which have finitely many integer solutions, proposed by A. Tyszka. For such a system we construct a slightly larger one with much more solutions than the given one.

On ternary quadratic forms over the rational numbers

Amir Jafari, Farhood Rostamkhani (2022)

Czechoslovak Mathematical Journal

For a ternary quadratic form over the rational numbers, we characterize the set of rational numbers represented by that form over the rational numbers. Consequently, we reprove the classical fact that any positive definite integral ternary quadratic form must fail to represent infinitely many positive integers over the rational numbers. Our proof uses only the quadratic reciprocity law and the Hasse-Minkowski theorem, and is elementary.

On the Brocard-Ramanujan problem and generalizations

Andrzej Dąbrowski (2012)

Colloquium Mathematicae

Let p i denote the ith prime. We conjecture that there are precisely 28 solutions to the equation n ² - 1 = p α p k α k in positive integers n and α₁,..., α k . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).

On the Carlitz problem on the number of solutions to some special equations over finite fields

Ioulia N. Baoulina (2011)

Journal de Théorie des Nombres de Bordeaux

We consider an equation of the type a 1 x 1 2 + + a n x n 2 = b x 1 x n over the finite field 𝔽 q = 𝔽 p s . Carlitz obtained formulas for the number of solutions to this equation when n = 3 and when n = 4 and q 3 ( mod 4 ) . In our earlier papers, we found formulas for the number of solutions when d = gcd ( n - 2 , ( q - 1 ) / 2 ) = 1 or 2 or 4 ; and when d > 1 and - 1 is a power of p modulo  2 d . In this paper, we obtain formulas for the number of solutions when d = 2 t , t 3 , p 3 or 5 ( mod 8 ) or p 9 ( mod 16 ) . For general case, we derive lower bounds for the number of solutions.

On the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2

Ruizhou Tong (2021)

Czechoslovak Mathematical Journal

Let p be an odd prime. By using the elementary methods we prove that: (1) if 2 x , p ± 3 ( mod 8 ) , the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution except when p = 3 or p is of the form p = 2 a 0 2 + 1 , where a 0 > 1 is an odd positive integer. (2) if 2 x , 2 y , y 2 , 4 , then the Diophantine equation ( 2 x - 1 ) ( p y - 1 ) = 2 z 2 has no positive integer solution.

Currently displaying 761 – 780 of 1554