Displaying 841 – 860 of 1554

Showing per page

On the equation a p + 2 α b p + c p = 0

Kenneth A. Ribet (1997)

Acta Arithmetica

We discuss the equation a p + 2 α b p + c p = 0 in which a, b, and c are non-zero relatively prime integers, p is an odd prime number, and α is a positive integer. The technique used to prove Fermat’s Last Theorem shows that the equation has no solutions with α < 1 or b even. When α=1 and b is odd, there are the two trivial solutions (±1, ∓ 1, ±1). In 1952, Dénes conjectured that these are the only ones. Using methods of Darmon, we prove this conjecture for p≡ 1 mod 4.

On the equation a³ + b³ⁿ = c²

Michael A. Bennett, Imin Chen, Sander R. Dahmen, Soroosh Yazdani (2014)

Acta Arithmetica

We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.

On the exponential diophantine equation x y + y x = z z

Xiaoying Du (2017)

Czechoslovak Mathematical Journal

For any positive integer D which is not a square, let ( u 1 , v 1 ) be the least positive integer solution of the Pell equation u 2 - D v 2 = 1 , and let h ( 4 D ) denote the class number of binary quadratic primitive forms of discriminant 4 D . If D satisfies 2 D and v 1 h ( 4 D ) 0 ( mod D ) , then D is called a singular number. In this paper, we prove that if ( x , y , z ) is a positive integer solution of the equation x y + y x = z z with 2 z , then maximum max { x , y , z } < 480000 and both x , y are singular numbers. Thus, one can possibly prove that the equation has no positive integer solutions ( x , y , z ) .

On the exponential local-global principle

Boris Bartolome, Yuri Bilu, Florian Luca (2013)

Acta Arithmetica

Skolem conjectured that the "power sum" A(n) = λ₁α₁ⁿ + ⋯ + λₘαₘⁿ satisfies a certain local-global principle. We prove this conjecture in the case when the multiplicative group generated by α₁,...,αₘ is of rank 1.

Currently displaying 841 – 860 of 1554