Displaying 1141 – 1160 of 1560

Showing per page

Solving linear systems of equations over integers with Gröbner bases

Amir Hashemi (2014)

Acta Arithmetica

We introduce a novel application of Gröbner bases to solve (non-homogeneous) systems of integer linear equations over integers. For this purpose, we present a new algorithm which ascertains whether a linear system of equations has an integer solution or not; in the affirmative case, the general integer solution of the system is determined.

Some applications of decomposable form equations to resultant equations

K. Győry (1993)

Colloquium Mathematicae

1. Introduction. The purpose of this paper is to establish some general finiteness results (cf. Theorems 1 and 2) for resultant equations over an arbitrary finitely generated integral domain R over ℤ. Our Theorems 1 and 2 improve and generalize some results of Wirsing [25], Fujiwara [6], Schmidt [21] and Schlickewei [17] concerning resultant equations over ℤ. Theorems 1 and 2 are consequences of a finiteness result (cf. Theorem 3) on decomposable form equations over R. Some applications of Theorems...

Some observations on the Diophantine equation f(x)f(y) = f(z)²

Yong Zhang (2016)

Colloquium Mathematicae

Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.

Currently displaying 1141 – 1160 of 1560