Über eine arithmetische Aufspaltung der logarithmischen Ableitung Selbergscher Zetafunktionen
In the present article, we determine explicit uniformizations of modular curves attached to triangle Fuchsian groups with cusps. Their Hauptmoduln are obtained by integration of non-linear differential equations of the third order. Series expansions involving integral coefficients are calculated around the cusps as well as around the elliptic points. The method is an updated form of a differential construction of the elliptic modular function j, first performed by Dedekind in 1877. Subtle differences...
All maps of type (m,n) are covered by a universal map M(m,n) which lies on one of the three simply connected Riemann surfaces; in fact M(m,n) covers all maps of type (r,s) where r|m and s|n. In this paper we construct a tessellation M which is universal for all maps on all surfaces. We also consider the tessellation M(8,3) which covers all triangular maps. This coincides with the well-known Farey tessellation and we find many connections between M(8,3) and M.