Previous Page 6

Displaying 101 – 113 of 113

Showing per page

Une formule de Riemann-Hurwitz pour le groupe de Selmer d'une courbe elliptique

Alexis Michel (1993)

Annales de l'institut Fourier

Soit E une courbe elliptique avec multiplication complexe, définie sur un corps de nombres F . Soit p un nombre premier. En ajoutant certains points de p -torsion de E à F , on construit une p -extension F de F . On associe à F un groupe de Selmer.Pour une p -extension galoisienne de F , Wingberg a montré, sous les conjectures arithmétiques usuelles, un analogue de la formule de Riemann-Hurwitz pour le corang du groupe de Selmer en haut de la tour. Nous donnons une nouvelle preuve de ce résultat dans l’esprit...

Weber's class invariants revisited

Reinhard Schertz (2002)

Journal de théorie des nombres de Bordeaux

Let K be a quadratic imaginary number field of discriminant d . For t let 𝔒 t denote the order of conductor t in K and j ( 𝔒 t ) its modular invariant which is known to generate the ring class field modulo t over K . The coefficients of the minimal equation of j ( 𝔒 t ) being quite large Weber considered in [We] the functions f , f 1 , f 2 , γ 2 , γ 3 defined below and thereby obtained simpler generators of the ring class fields. Later on the singular values of these functions played a crucial role in Heegner’s solution [He] of the class...

Currently displaying 101 – 113 of 113

Previous Page 6