Beilinson-Kato elements in K₂ of modular curves
We determine all modular curves X(N) (with N ≥ 7) that are hyperelliptic or bielliptic. We also give a proof that the automorphism group of X(N) is PSL₂(ℤ/Nℤ), whence it coincides with the normalizer of Γ(N) in PSL₂(ℝ) modulo ±Γ(N).
For any Eichler order of level in an indefinite quaternion algebra of discriminant there is a Fuchsian group and a Shimura curve . We associate to a set of binary quadratic forms which have semi-integer quadratic coefficients, and we develop a classification theory, with respect to , for primitive forms contained in . In particular, the classification theory of primitive integral binary quadratic forms by is recovered. Explicit fundamental domains for allow the characterization...