The search session has expired. Please query the service again.
We overview a unified approach to the André-Oort and Manin-Mumford conjectures based on a combination of Galois-theoretic and ergodic techniques. This paper is based on recent work of Klingler, Ullmo and Yafaev on the André-Oort conjecture, and of Ratazzi and Ullmo on the Manin-Mumford conjecture.
In this paper, we survey some Galois-theoretic techniques for studying torsion points on curves. In particular, we give new proofs of some results of A. Tamagawa and the present authors for studying torsion points on curves with “ordinary good” or “ordinary semistable” reduction at a given prime. We also give new proofs of : (1) the Manin-Mumford conjecture : there are only finitely many torsion points lying on a curve of genus at least embedded in its jacobian by an Albanese map; and (2) the...
We prove non-trivial lower bounds for the growth of ranks of Selmer groups of Hilbert modular forms over ring class fields and over certain Kummer extensions, by establishing first a suitable parity result.
Currently displaying 1 –
6 of
6