Displaying 61 – 80 of 94

Showing per page

Perfect powers expressible as sums of two fifth or seventh powers

Sander R. Dahmen, Samir Siksek (2014)

Acta Arithmetica

We show that the generalized Fermat equations with signatures (5,5,7), (5,5,19), and (7,7,5) (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures (5,5,11), (5,5,13), and (7,7,11). The main ingredients for obtaining our results are descent techniques, the method of Chabauty-Coleman, and the modular approach to Diophantine equations.

Points algébriques de degrés au plus 12 sur la quintique de Fermat

Thiéyacine Top, Oumar Sall (2015)

Acta Arithmetica

We determine explicitly the set of algebraic points of degree at most 12 over ℚ on the Fermat quintic. This extends a previous result given by M. Klassen and P. Tzermias (1997), who described the set of algebraic points of degree at most 6 over ℚ.

Points rationnels et méthode de Chabauty elliptique

Sylvain Duquesne (2003)

Journal de théorie des nombres de Bordeaux

La méthode de Chabauty elliptique permet de calculer les points rationnels sur une courbe définie sur un corps de nombres lorsque le théorème de Chabauty ne s’applique pas, c’est à dire lorsque le rang de la jacobienne est supérieur au genre de la courbe. Nous exposons cette méthode et nous la généralisons dans de nouveaux cas en écrivant une version explicite du théorème de préparation de Weierstrass en 2 variables. En particulier nous calculons tous les points rationnels d’une courbe de genre...

Rational points on curves

Michael Stoll (2011)

Journal de Théorie des Nombres de Bordeaux

This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve  C over  . The focus is on practical aspects of this problem in the case that the genus of  C is at least  2 , and therefore the set of rational points is finite.

Siegel’s theorem and the Shafarevich conjecture

Aaron Levin (2012)

Journal de Théorie des Nombres de Bordeaux

It is known that in the case of hyperelliptic curves the Shafarevich conjecture can be made effective, i.e., for any number field k and any finite set of places S of k , one can effectively compute the set of isomorphism classes of hyperelliptic curves over k with good reduction outside S . We show here that an extension of this result to an effective Shafarevich conjecture for Jacobians of hyperelliptic curves of genus g would imply an effective version of Siegel’s theorem for integral points on...

Currently displaying 61 – 80 of 94