Failure of the Hasse principle for Châtelet surfaces in characteristic
Given any global field of characteristic , we construct a Châtelet surface over that fails to satisfy the Hasse principle. This failure is due to a Brauer-Manin obstruction. This construction extends a result of Poonen to characteristic , thereby showing that the étale-Brauer obstruction is insufficient to explain all failures of the Hasse principle over a global field of any characteristic.