The search session has expired. Please query the service again.
Let X be a nice variety over a number field k. We characterise in pure “descent-type” terms some inequivalent obstruction sets refining the inclusion . In the first part, we apply ideas from the proof of by Skorobogatov and Demarche to new cases, by proving a comparison theorem for obstruction sets. In the second part, we show that if are such that , then . This allows us to conclude, among other things, that and .
Si un système d’équations polynomiales à coefficients entiers admet une solution dans , il en admet sur tout complété -adique ou réel de . La réciproque a été démontrée par Hasse pour les quadriques, mais elle est fausse en général. Une grande partie des contre-exemples connus peuvent être expliqués à l’aide de l’obstruction de Brauer-Manin, basée sur la théorie du corps de classe. Il est donc naturel de se demander si, pour certaines classes de variétés, cette obstruction est la seule. Le but...
Let be a morphism of a variety defined over a number field , let be a -subvariety, and let be the orbit of a point . We describe a local-global principle for the intersection . This principle may be viewed as a dynamical analog of the Brauer–Manin obstruction. We show that the rational points of are Brauer–Manin unobstructed for power maps on in two cases: (1) is a translate of a torus. (2) is a line and has a preperiodic coordinate. A key tool in the proofs is the classical...
We present a collection of results on a conjecture of Jannsen about the p-adic realizations associated to Hecke characters over an imaginary quadratic field K of class number 1.The conjecture is easy to check for Galois groups purely of local type (Section 1). In Section 2 we define the p-adic realizations associated to Hecke characters over K. We prove the conjecture under a geometric regularity condition for the imaginary quadratic field K at p, which is related to the property that a global Galois...
We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.
Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.
Currently displaying 1 –
15 of
15