Schmidt's conjecture on normality for commuting matrices.
In this paper we study multi-dimensional words generated by fixed points of substitutions by projecting the integer points on the corresponding broken halfline. We show for a large class of substitutions that the resulting word is the restriction of a linear function modulo and that it can be decided whether the resulting word is space filling or not. The proof uses lattices and the abstract number system associated with the substitution.
étant une suite de nombres réels, soit l’ensemble normal associé. Pour , nous étudions la question : existe-t-il une suite à valeurs dans un intervalle borné telle que ? Dans l’affirmative, nous cherchons alors à minimiser la longueur de l’intervalle . Dans les cas les plus simples, où , ce problème se ramène à minimiser le degré de , avec la contrainte « a tous ses coefficients positifs», pour des polynômes de type très particulier associés aux ensembles .