A combinatorial method for construction normal numbers.
We extend the Davenport and Erdős construction of normal numbers to the case.
A new class of -adic normal numbers is built recursively by using Eulerian paths in a sequence of de Bruijn digraphs. In this recursion, a path is constructed as an extension of the previous one, in such way that the -adic block determined by the path contains the maximal number of different -adic subblocks of consecutive lengths in the most compact arrangement. Any source of redundancy is avoided at every step. Our recursive construction is an alternative to the several well-known concatenative...
Soit un nombre de Pisot de degré ; nous avons montré précédemment que l’endomorphisme du tore dont est valeur propre est facteur du -shift bilatéral par une application continue ; nous prouvons ici (théorème 1) que l’application conserve l’entropie de toute mesure invariante sur le -shift. Ceci permet de définir l’entropie d’un nombre dans la base et d’en étudier la stabilité. Nous généralisons également des résultats de Kamae, Rauzy et Bernay.
We consider positional numeration system with negative base , as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when is a quadratic Pisot number. We study a class of roots of polynomials , , and show that in this case the set of finite -expansions is closed under addition, although it is not closed under subtraction. A particular example is , the golden ratio. For such , we determine the exact bound on the number of fractional digits...