Mahler's measure and special values of -functions.
Page 1
Boyd, David W. (1998)
Experimental Mathematics
Karma Dajani, Martijn de Vries (2005)
Journal of the European Mathematical Society
Let be a non-integer. We consider -expansions of the form , where the digits are generated by means of a Borel map defined on . We show that has a unique mixing measure of maximal entropy with marginal measure an infinite convolution of Bernoulli measures. Furthermore, under the measure the digits form a uniform Bernoulli process. In case 1 has a finite greedy expansion with positive coefficients, the measure of maximal entropy is Markov. We also discuss the uniqueness of -expansions....
Y. Lacroix (1993)
Acta Arithmetica
Fritz Schweiger (1975)
Acta Arithmetica
Clemens Heuberger (2002)
Journal de théorie des nombres de Bordeaux
We consider minimal redundant digit expansions in canonical number systems in the gaussian integers. In contrast to the case of rational integers, where the knowledge of the two least significant digits in the “standard” expansion suffices to calculate the least significant digit in a minimal redundant expansion, such a property does not hold in the gaussian numbers : We prove that there exist pairs of numbers whose non-redundant expansions agree arbitrarily well but which have different least significant...
G.J. Rieger (1979)
Journal für die reine und angewandte Mathematik
Geon Ho Choe, Toshihiro Hamachi, Hitoshi Nakada (2004)
Studia Mathematica
Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by , where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that converges a.e. and the limit equals 1/3 or 2/3 depending on x.
Jean Marie Dumont, Alain Thomas (1994)
Acta Arithmetica
David W. Boyd, J. Michael Steele (1979)
Journal für die reine und angewandte Mathematik
Page 1