On a ternary quadratic form over primes
We use Bourgain's recent bound for short exponential sums to prove certain independence results related to the distribution of squarefree numbers in arithmetic progressions.
The paper deals with asymptotics for a class of arithmetic functions which describe the value distribution of the greatest-common-divisor function. Typically, they are generated by a Dirichlet series whose analytic behavior is determined by the factor ζ2(s)ζ(2s − 1). Furthermore, multivariate generalizations are considered.
We give a simple proof that critical values of any Artin -function attached to a representation with character are stable under twisting by a totally even character , up to the -th power of the Gauss sum related to and an element in the field generated by the values of and over . This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.