Page 1 Next

Displaying 1 – 20 of 174

Showing per page

On a question of A. Schinzel: Omega estimates for a special type of arithmetic functions

Manfred Kühleitner, Werner Nowak (2013)

Open Mathematics

The paper deals with lower bounds for the remainder term in asymptotics for a certain class of arithmetic functions. Typically, these are generated by a Dirichlet series of the form ζ 2(s)ζ(2s−1)ζ M(2s)H(s), where M is an arbitrary integer and H(s) has an Euler product which converges absolutely for R s > σ0, with some fixed σ0 < 1/2.

On a sum involving the integral part function

Bo Chen (2024)

Czechoslovak Mathematical Journal

Let [ t ] be the integral part of a real number t , and let f be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum S f ( x ) = n x f ( [ x / n ] ) , which improves the recent result of J. Stucky (2022).

On a sum involving the Möbius function

I. Kiuchi, M. Minamide, Y. Tanigawa (2015)

Acta Arithmetica

Let c q ( n ) be the Ramanujan sum, i.e. c q ( n ) = d | ( q , n ) d μ ( q / d ) , where μ is the Möbius function. In a paper of Chan and Kumchev (2012), asymptotic formulas for n y ( q x c q ( n ) ) k (k = 1,2) are obtained. As an analogous problem, we evaluate n y ( n x c ̂ q ( n ) ) k (k = 1,2), where c ̂ q ( n ) : = d | ( q , n ) d | μ ( q / d ) | .

Currently displaying 1 – 20 of 174

Page 1 Next