Displaying 381 – 400 of 648

Showing per page

On the distribution of consecutive square-free primitive roots modulo p

Huaning Liu, Hui Dong (2015)

Czechoslovak Mathematical Journal

A positive integer n is called a square-free number if it is not divisible by a perfect square except 1 . Let p be an odd prime. For n with ( n , p ) = 1 , the smallest positive integer f such that n f 1 ( mod p ) is called the exponent of n modulo p . If the exponent of n modulo p is p - 1 , then n is called a primitive root mod p . Let A ( n ) be the characteristic function of the square-free primitive roots modulo p . In this paper we study the distribution n x A ( n ) A ( n + 1 ) , and give an asymptotic formula by using properties of character sums.

On the distribution of integral and prime divisors with equal norms

Baruch Z. Moroz (1984)

Annales de l'institut Fourier

In finite Galois extensions k 1 , ... , k r of Q with pairwise coprime discriminants the integral and the prime divisors subject to the condition N k 1 / Q 𝔞 r = = N k r / Q 𝔞 r are equidistributed in the sense of E. Hecke.

On the distribution of ( k , r ) -integers in Piatetski-Shapiro sequences

Teerapat Srichan (2021)

Czechoslovak Mathematical Journal

A natural number n is said to be a ( k , r ) -integer if n = a k b , where k > r > 1 and b is not divisible by the r th power of any prime. We study the distribution of such ( k , r ) -integers in the Piatetski-Shapiro sequence { n c } with c > 1 . As a corollary, we also obtain similar results for semi- r -free integers.

On the distribution of p α modulo one

Xiaodong Cao, Wenguang Zhai (1999)

Journal de théorie des nombres de Bordeaux

In this paper, we give a new upper-bound for the discrepancy D ( N ) : = sup 0 γ 0 | p / N p α γ 1 - π ( N ) γ | for the sequence ( p α ) , when 5 / 3 α > 3 and α 2 .

On the divisor function over Piatetski-Shapiro sequences

Hui Wang, Yu Zhang (2023)

Czechoslovak Mathematical Journal

Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

Currently displaying 381 – 400 of 648