Displaying 81 – 100 of 648

Showing per page

Average r-rank Artin conjecture

Lorenzo Menici, Cihan Pehlivan (2016)

Acta Arithmetica

Let Γ ⊂ ℚ * be a finitely generated subgroup and let p be a prime such that the reduction group Γₚ is a well defined subgroup of the multiplicative group ₚ*. We prove an asymptotic formula for the average of the number of primes p ≤ x for which [ₚ*:Γₚ] = m. The average is taken over all finitely generated subgroups Γ = a , . . . , a r * , with a i and a i T i , with a range of uniformity T i > e x p ( 4 ( l o g x l o g l o g x ) 1 / 2 ) for every i = 1,...,r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar...

Bounds for double zeta-functions

Isao Kiuchi, Yoshio Tanigawa (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper we shall derive the order of magnitude for the double zeta-functionof Euler-Zagier type in the region 0 s j < 1 ( j = 1 , 2 ) .First we prepare the Euler-Maclaurinsummation formula in a suitable form for our purpose, and then we apply the theory of doubleexponential sums of van der Corput’s type.

Character sums in complex half-planes

Sergei V. Konyagin, Vsevolod F. Lev (2004)

Journal de Théorie des Nombres de Bordeaux

Let A be a finite subset of an abelian group G and let P be a closed half-plane of the complex plane, containing zero. We show that (unless A possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of A which belongs to P . In other words, there exists a non-trivial character χ G ^ such that a A χ ( a ) P .

Characterization of the torsion of the Jacobians of two families of hyperelliptic curves

Tomasz Jędrzejak (2013)

Acta Arithmetica

Consider the families of curves C n , A : y ² = x + A x and C n , A : y ² = x + A where A is a nonzero rational. Let J n , A and J n , A denote their respective Jacobian varieties. The torsion points of C 3 , A ( ) and C 3 , A ( ) are well known. We show that for any nonzero rational A the torsion subgroup of J 7 , A ( ) is a 2-group, and for A ≠ 4a⁴,-1728,-1259712 this subgroup is equal to J 7 , A ( ) [ 2 ] (for a excluded values of A, with the possible exception of A = -1728, this group has a point of order 4). This is a variant of the corresponding results for J 3 , A (A ≠ 4) and J 5 , A . We also almost...

Currently displaying 81 – 100 of 648