Displaying 161 – 180 of 648

Showing per page

Exponential sums with coefficients 0 or 1 and concentrated L p norms

B. Anderson, J. M. Ash, R. L. Jones, D. G. Rider, B. Saffari (2007)

Annales de l’institut Fourier

A sum of exponentials of the form f ( x ) = exp 2 π i N 1 x + exp 2 π i N 2 x + + exp 2 π i N m x , where the N k are distinct integers is called an idempotent trigonometric polynomial (because the convolution of f with itself is f ) or, simply, an idempotent. We show that for every p > 1 , and every set E of the torus 𝕋 = / with | E | > 0 , there are idempotents concentrated on E in the L p sense. More precisely, for each p > 1 , there is an explicitly calculated constant C p > 0 so that for each E with | E | > 0 and ϵ > 0 one can find an idempotent f such that the ratio E | f | p / 𝕋 | f | p 1 / p is greater than C p - ϵ . This is in fact...

Exponential Sums with Farey Fractions

Igor E. Shparlinski (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

For positive integers m and N, we estimate the rational exponential sums with denominator m over the reductions modulo m of elements of the set ℱ(N) = {s/r : r,s ∈ ℤ, gcd(r,s) = 1, N ≥ r > s ≥ 1} of Farey fractions of order N (only fractions s/r with gcd(r,m) = 1 are considered).

Finite projective planes, Fermat curves, and Gaussian periods

Koen Thas, Don Zagier (2008)

Journal of the European Mathematical Society

One of the oldest and most fundamental problems in the theory of finite projective planes is to classify those having a group which acts transitively on the incident point-line pairs (flags). The conjecture is that the only ones are the Desarguesian projective planes (over a finite field). In this paper, we show that non-Desarguesian finite flag-transitive projective planes exist if and only if certain Fermat surfaces have no nontrivial rational points, and formulate several other equivalences involving...

Fonctions définies dans le plan et vérifiant certaines propriétés de moyenne

Alain Yger (1981)

Annales de l'institut Fourier

Soit a un réel de ] 0 , 1 [ . Nous étudions le système d’équations de convolution suivant ( * ) x R 2 , f ( x ) = 1 4 ϵ = ± 1 ϵ ' = ± 1 f ( x + ( ϵ , ϵ ' ) ) = 1 4 ϵ = ± 1 ϵ ' = ± 1 f ( x + a ( ϵ , ϵ ' ) ) . Nous démontrons que les exponentielles polynômes solutions de ( * ) sont denses dans l’espace des solutions C du système d’équations; l’idéal de ' ( R 2 ) engendré par les transformées de Fourier des deux mesures intervenant ici est “slowly decreasing” au sens de Berenstein-Taylor. Lorsque a n’est pas un nombre de Liouville, nous montrons qu’il existe un ouvert relativement compact telle que toute solution distribution de ( * ) régulière...

Galois module structure of rings of integers

Martin J. Taylor (1980)

Annales de l'institut Fourier

Let E / F be a Galois extension of number fields with Γ = Gal ( E / F ) and with property that the divisors of ( E : F ) are non-ramified in E / Q . We denote the ring of integers of E by 𝒪 E and we study 𝒪 E as a Z Γ -module. In particular we show that the fourth power of the (locally free) class of 𝒪 E is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of E , together with new determinantal congruences for cyclic group rings and corresponding congruences...

Gaps between primes in Beatty sequences

Roger C. Baker, Liangyi Zhao (2016)

Acta Arithmetica

We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).

Currently displaying 161 – 180 of 648