The search session has expired. Please query the service again.
In the paper, we give a survey of the results on the approximation of analytic functions by shifts of Hurwitz zeta-functions. Theorems of such a kind are called universality theorems. Continuous, discrete and joint universality theorems of Hurwitz zeta-functions are discussed.
We prove explicit upper bounds for the density of universality for Dirichlet series. This complements previous results [15]. Further, we discuss the same topic in the context of discrete universality. As an application we sharpen and generalize an estimate of Reich concerning small values of Dirichlet series on arithmetic progressions in the particular case of the Riemann zeta-function.
In this paper, we give certain upper bounds for the 2k-th moments, k ≥ 1/2, of derivatives of Dirichlet L-functions at s = 1/2 under the assumption of the Generalized Riemann Hypothesis.
Currently displaying 21 –
24 of
24