Previous Page 2

Displaying 21 – 28 of 28

Showing per page

On Witten multiple zeta-functions associated with semisimple Lie algebras I

Kohji Matsumoto, Hirofumi Tsumura (2006)

Annales de l’institut Fourier

We define Witten multiple zeta-functions associated with semisimple Lie algebras 𝔰𝔩 ( n ) , ( n = 2 , 3 , ... ) of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case 𝔰𝔩 ( 4 ) , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...

Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues

Jean-Yves Enjalbert, Hoang Ngoc Minh (2011)

Journal de Théorie des Nombres de Bordeaux

Dans ce travail nous nous intéressons à l’étude d’une famille de séries paramétrées de Dirichlet qui englobe les polyzêtas colorés d’une part et les polyzêtas de Hurwitz d’autre part. Cette famille de fonctions vérifie deux relations de mélange ; nous mentionnons aussi des relations quasi-périodiques et des relations de translation de variables. Nous donnons un codage en terme d’intégrales itérées des séries étudiées, qui conduit à leur représentation intégrale. Celle-ci permet d’en effectuer un...

Séries hypergéométriques multiples et polyzêtas

J. Cresson, S. Fischler, T. Rivoal (2008)

Bulletin de la Société Mathématique de France

Nous décrivons un algorithme théorique et effectif permettant de démontrer que des séries et intégrales hypergéométriques multiples relativement générales se décomposent en combinaisons linéaires à coefficients rationnels de polyzêtas.

Some infinite sums identities

Meher Jaban, Sinha Sneh Bala (2015)

Czechoslovak Mathematical Journal

We find the sum of series of the form i = 1 f ( i ) i r for some special functions f . The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező’s paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of π .

Currently displaying 21 – 28 of 28

Previous Page 2