On multiple higher Mahler measures and multiple L values
We investigate the singularities of a class of multiple L-functions considered by Akiyama and Ishikawa [2].
We define Witten multiple zeta-functions associated with semisimple Lie algebras , of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...
Dans ce travail nous nous intéressons à l’étude d’une famille de séries paramétrées de Dirichlet qui englobe les polyzêtas colorés d’une part et les polyzêtas de Hurwitz d’autre part. Cette famille de fonctions vérifie deux relations de mélange ; nous mentionnons aussi des relations quasi-périodiques et des relations de translation de variables. Nous donnons un codage en terme d’intégrales itérées des séries étudiées, qui conduit à leur représentation intégrale. Celle-ci permet d’en effectuer un...
Nous décrivons un algorithme théorique et effectif permettant de démontrer que des séries et intégrales hypergéométriques multiples relativement générales se décomposent en combinaisons linéaires à coefficients rationnels de polyzêtas.
We find the sum of series of the form for some special functions . The above series is a generalization of the Riemann zeta function. In particular, we take as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező’s paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of .