Displaying 61 – 80 of 414

Showing per page

Counting monic irreducible polynomials P in 𝔽 q [ X ] for which order of X ( mod P ) is odd

Christian Ballot (2007)

Journal de Théorie des Nombres de Bordeaux

Hasse showed the existence and computed the Dirichlet density of the set of primes p for which the order of 2 ( mod p ) is odd; it is 7 / 24 . Here we mimic successfully Hasse’s method to compute the density δ q of monic irreducibles P in 𝔽 q [ X ] for which the order of X ( mod P ) is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the δ p ’s as p varies through all rational primes.

Développement asymptotique de la somme des inverses d’une fonction arithmétique

Hacène Belbachir, Farid Bencherif (2009)

Annales mathématiques Blaise Pascal

La somme des puissances des inverses de π n , π x désignant le nombre de nombres premiers n’excédant pas x , a fait l’objet de nombreux travaux. Nous généralisons, dans cet article, les formules asymptotiques obtenues par ces auteurs à toute une classe de fonctions arithmétiques.

Discretization of prime counting functions, convexity and the Riemann hypothesis

Emre Alkan (2023)

Czechoslovak Mathematical Journal

We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free...

Currently displaying 61 – 80 of 414