Carmichael's lambda function
We find an improvement to Huxley and Konyagin’s current lower bound for the number of circles passing through five integer points. We conjecture that the improved lower bound is the asymptotic formula for the number of circles passing through five integer points. We generalise the result to circles passing through more than five integer points, giving the main theorem in terms of cyclic polygons with m integer point vertices. Theorem. Let m ≥ 4 be a fixed integer. Let be the number of cyclic polygons...
Ces notes ont pour but de rassembler les différents résultats de combinatoire des mots relatifs au billard polygonal et polyédral. On commence par rappeler quelques notions de combinatoire, puis on définit le billard, les notions utiles en dynamique et le codage de l’application. On énonce alors les résultats connus en dimension deux puis trois.
0. Introduction. The content of this paper is part of the author's Ph.D. thesis. The two new theorems in this paper provide upper bounds on the concentration function of additive functions evaluated on shifted γ-twin prime, where γ is any positive even integers. Both results are generalizations of theorems due to I. Z. Ruzsa, N. M. Timofeev, and P. D. T. A. Elliott.
We show that for any given integer there exist infinitely many consecutive square-free numbers of the type , . We also establish an asymptotic formula for such that , are square-free. The method we used in this paper is due to Tolev.
We construct normal numbers in base q by concatenating q-ary expansions of pseudo-polynomials evaluated at primes. This extends a recent result by Tichy and the author.