On short sums of certain multiplicative functions.
The arithmetic function counts the number of ways to write a natural number n as a sum of two kth powers (k ≥ 2 fixed). The investigation of the asymptotic behaviour of the Dirichlet summatory function of leads in a natural way to a certain error term which is known to be in mean-square. In this article it is proved that as t → ∞. Furthermore, it is shown that a similar result would be true for every fixed k > 3 provided that a certain set of algebraic numbers contains a sufficiently...
A certain generalized divisor function is studied which counts the number of factorizations of a natural number into integer powers with prescribed exponents under certain congruence restrictions. An -estimate is established for the remainder term in the asymptotic for its Dirichlet summatory function.
In finite Galois extensions of with pairwise coprime discriminants the integral and the prime divisors subject to the condition are equidistributed in the sense of E. Hecke.
Consider the region obtained by removing from the discs of radius , centered at the points of integer coordinates with . We are interested in the distribution of the free path length (exit time) of a point particle, moving from along a linear trajectory of direction , as . For every integer number , we prove the weak convergence of the probability measures associated with the random variables , explicitly computing the limiting distribution. For , respectively , this result leads...